High Chirality Transfer in Chiral Selenimides *via* **[2,3]Sigmatropic Rearrangement Yoshiaki Nishibayashi, Takashi Chiba, Kouichi Ohe and Sakae Uemura"**

Division of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-0 I, Japan

The imination of chiral cinnamyl 2-(l-dimethylaminoethyl)ferrocenyl selenides with [N-(toluene-p-sulfonyl)imino] phenyliodinane and chloramine-T affords the corresponding chiral allylic amines *via* [2,3]sigmatropic rearrangement of the selenimide intermediates with up to 87% ee, highly diastereoselective imination of selenides and highly stereospecific [2,3]sigmatropic rearrangement being shown.

Previously we succeeded in asymmetric [2,3] sigmatropic rearrangement of the chiral selenoxides which were prepared by diastereoselective' and enantioselective oxidation.2 In the former case, the chiral 2-(1-dimethylaminoethyl)ferrocenylselenium moiety played an important part in stereoselection. The diastereoselective oxidation of the selenide was a key step. The selenimides, nitrogen analogues of selenoxides, are known to undergo the same $[2,3]$ sigmatropic transformation as selen $oxides.³$ If the imination of selenides occurred diastereoselectively, chirality transfer should in principle occur. Compared with the well established preparation of chiral allylic alcohols,⁴ the preparation of chiral allylic amines, important compounds in organic synthesis,⁵ is still quite limited.⁶ We xides.³ If the imination of selenides occurred diastereo-
electively, chirality transfer should in principle occur. Com-
alcohols,⁴ the preparation of chiral allylic amines, important mod
compounds in organic synthesi

Scheme 1

Table 1 Asymmetric [2,3]sigmatropic rearrangement *via* chiral selenimides

Run ^a	$Fe*$	Reagent	T /°C (t/h)	Yield $(\%)^b$		
				2	3	ee $(\%)^c$
	(R,S)	TsNCINa	25(1)	29	23	13
$\overline{2}$	(R,S)	TsNClNa	0(20)	13	27	45
3	(S,R)	TsNClNa	$0 - 25(22)$	17	24	13
4	(S,R)	$PhI = NTs$	25(1)	52	0	49
5	(S,R)	$PhI = NTs$	0(20)	52	0	80
6	(S,R)	$PhI = NTs$	$-20(72)$	Ω	0	
7	(R,S)	$PhI = NTs$	0(20)	42	0	87
8e	(S,R)	$PhI = NTs$	0(20)	49	0	77

a All the reactions were carried out in 0.10 mmol scale. **b** Isolated yield. The ee values of 2 were determined by HPLC. ^d The reaction was carried out

present here the preliminary results of the asymmetric imination of chiral cinnamyl ferrocenyl selenides *(E* and Z) with *[N-* **(toluene-p-sulfonyl)imino]phenyliodinane** (PhI=NTs)7 or chloramine-T(TsNClNa)⁸ giving the corresponding chiral allylic amines.

Treatment of chiral (E) -cinnamyl (R,S) -ferrocenyl selenide $[(R,S)-1]^{1a}$ with TsNClNa in dichloromethane at 25 °C afforded the secondary allylic amine **21** and the primary allylic amine **3** in moderate yields with only a low enantiomeric excess (ee) of **2** (Scheme 1; Table 1, run 1). -The ee of **2** was determined by HPLC on a Daicel Chiralcel OD column. At low temperature a moderate ee was obtained but with low yield (runs 2 and 3). Surprisingly, when $PhI = NTs$ was used as an imination reagent instead of TsNClNa, only compound **2** was produced from (S,R)-1 in *52%* yield with moderate ee (49%) at *25* "C (run 4) and with much higher ee (80%) at 0 °C (run 5). From (R, S) -1, a similar result (42%, 87% ee) was obtained (run 7). \ddagger However, at -20 °C the reaction did not proceed and the starting selenide 1 was recovered (run 6). Interestingly, even starting with the (Z) -cinnamyl (S,R) -ferrocenyl selenide, the same enantiomer was produced (49% yield, 77% ee) at 0 °C (run 8),§ the result being consistent with a [2,3]sigmatropic rearrangement of the corresponding selenoxides to give the chiral **1** -phenylprop- 2 -en-1-ol.^{1a}

The resulting high ee of the products gave grounds for the following speculation on the present asymmetric reaction (Scheme 2): i, the initial imination step proceeds with high diastereoselectivity; ii, the chirality transfer via [2,3]sigmatropic rearrangement occurs almost without loss of optical purity. Compared with the chiral selenoxide, the epimerisation of chiral selenimides did not occur under our reaction conditions.^{9,10} Similar to the selenoxide, the axial chirality of the ferrocene plays an important role in the stereoselective formation of the chiral selenimide. To our knowledge, this is the first clear-cut example of high chirality transfer in chiral selenimides, where selenium acts as one of the chiral centres via [2,3]sigmatropic rearrangement.¹¹⁻¹³ \parallel We do not yet know the reason for the superiority of PhI = NTs over TsNClNa in both product selectivity and enantioselectivity.

The present work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan and by a Fellowship (Y. N.) of the Japan Society for the Promotion of Science for Japanese Junior Scientists.

Received, *9th* March *1995; Corn. 5f01463H*

Foot notes

* E-mail: uemura@scl.kyoto-u.ac.jp

t Satisfactory spectral data were obtained for racemic **2** prepared separately by the reaction of cinnamyl phenyl selenide with TsNCl.

Selected spectroscopic data for *2,* white solid, mp 97-99 "C; 1H NMR $(270 \text{ MHz}, \text{CDCl}_3)$ δ $\dot{2}$.39 (3 H, s), 4.80 (1 H, d, J = 6.9 Hz), 4.94 (1 H, dd, $J = 6.9$ and 5.9 Hz), 5.12 (1 H, d, $J = 16.8$ Hz), 5.14 (1 H, d, $J = 10.6$ Hz), 5.87 (1 H, ddd, *J* = 16.8, 10.6 and 5.9 Hz), 7.1–7.2 (2 H, m), 7.2–7.3 (5 H, m) and 7.63 (2 H, d, *J* = 8.4 Hz); ¹³C NMR (67.8 MHz, CDCl₃) δ 21.5(q), 59.9(d), 116.9(t), 127.l(d), 127.2(d), 127.8(d), 128.7(d), 129.4(d), 137.l(d), 137.7(s), 139.4(s) and 143.3(s).

Selected spectroscopic data for **3.13** 1H NMR (270 MHz, CDCl3) 6 2.42 $(3 H, s)$, 3.76 (2 H, ddd, <math>J = 6.4, 6.4 and 1.0 Hz), 4.47 (1 H, br), 6.02 (1 H, dt, *J* = 15.6 and 6.4 **Hz),** 6.44 (1 H, d, *J* = 15.6 Hz), 7.2-7.4 (7 H, m), 7.78 $(2 H, d, J = 7.8 Hz).$

 \ddagger The difference of the data for runs 5 and 7 was considered to be the accumulation of errors of measurement in a pair of independent experiments.

5 The absolute configurations of the chiral allylic N-tosylamine 2 and the amine itself have not been reported. We are now trying to determine the absolute configuration and will report in due course. Under the conditions of analysis (10% iso-propanol-hexane in 0.3 cm3 min-l at 40 *"C)* the two enantiomers of **2** appear at 29.5 and 34.4 min, respectively. With the chiral amine 2, prepared from the (E) -cinnamyl (S,R) -ferrocenyl selenide[(R,S) -11, the peak at 34.4 min was larger.

fi The rate of epimerisation by pyramidal inversion of the optically active selenimide was shown to be very slow,⁹ while in the selenoxide it is rather fast.¹⁰

I(Oxidative rearrangement of allylic selenide by NCS in the presence of chiral amine nucleophile¹¹ and that of chiral allylic selenide in the presence of achiral amine nucleophile12 provided the corresponding chiral allylic amine with up to 37% de and up to 84% ee, respectively, *via* [2,3]sigmatropic rearrangement of the selenimide intermediates. However, it is not clear in these reactions whether selenium played a role as a chiral centre.

References

1 *(a)* Y. Nishibayashi, **J.** D. Singh, **S.** Fukuzawa and **S.** Uemura, *J. Org. Chem.,* in the press; *(b)* H. J. Reich and K. E. Yelm, *J. Org. Chem.,* 1991, **56,** 5672.

- 2 N. Komatsu, Y. Nishibayashi and **S.** Uemura, *Tetrahedron Lett.,* 1993, **34,** 2339; F. **A.** Davis and R. T. Reddy, *J. Org. Chem.,* 1992, 57, 2599.
- 3 T. Hori and K. B. Sharpless, *J. Org. Chem.,* 1979, 44, 4208; J. E. Fankhauser, R. M. Peevey and **P.** B. Hopkins, *Tetrahedron Lett.,* 1984, 25, 15; J. N. Fitzner, R. G. Shea, J. E. Fankhauser and P. B. Hopkins, *Synth. Commun.,* 1984, 14, 605; R. G. Shea, J. N. Fitzner, J. E. Fankhauser and P. B. Hopkins, *J. Org. Chem.,* 1984, **49,** 3647.
- 4 For a review, see R. **A.** Johnson and K. B. Sharpless, in *Comprehensive Organic Synthesis,* ed. B. M. Trost and **1.** Fleming, Pergamon, Oxford, 1991, vol. 7, pp. 389-436.
- 5 M. George and B. Fraser-Reid, *Tetrahedron Lett.,* 1981,22,4635; L. E. Overman and **R.** J. McCready, *Tetrahedron Lett.,* 1982, 23, 4887; **S.** Kobayashi, T. Isobe and **M.** Ohno, *Tetrahedron Lett.,* 1984, 25, 5079.
- 6 **A.** Laurent, P. Mison and **A.** Nafti, *Synthesis,* 1983,685; L. E. Overman, *Acc. Chem. Res.,* 1980,13, 218.
- 7 Y. Yamada, T. Yamarnoto and M. Okawara, *Chem. Lett.,* 1975, 361. 8 K. B. Sharpless, T. Hori, L. K. Truesdale and C. 0. Dietrich, *J. Am.*
- *Chem. Soc.,* 1976,98,269.
- 9 N. Kamigata, H. Taka, **A.** Matsuhisa, **H.** Matsuyama and T. Shimizu, *J. Chem.* SOC., *Perkin Trans. 1,* 1994, 2257.
- 10 T. Shimizu, M. Kobayashi and N. Kamigata, *Bull. Chem. Soc., Jpn.,* 1988,61,3761.
- 11 R. G. Shea, J. N. Fitzner, **J. E.** Fankhauser, **A.** Spaltenstein, P. **A.** Carpino, R. M. Peevey, D. **V.** Pratt, B. J. Tenge and P. B. Hopkins, *J. Org. Chem.,* 1986, 51, 5243.
- 12 J. N. Fitzner, R. G. Shea, J. E. Fankhauser and P. B. Hopkins, *J. Urg. Chem.,* 1985, 50, 417.
- 13 E. E. Schweizer, L. D. Smucker and R. J. Votral, *J. Org. Chem.,* 1966, **31,** 467.